The mid-point of the domain of the function $f(x)=\sqrt{4-\sqrt{2 x+5}}$ real $x$ is
$\frac{1}{4}$
$\frac{3}{2}$
$\frac{2}{3}$
$-\frac{2}{5}$
The domain of the derivative of the function $f(x) = \left\{ \begin{array}{l}{\tan ^{ - 1}}x\;\;\;\;\;,\;|x|\; \le 1\\\frac{1}{2}(|x|\; - 1)\;,\;|x|\; > 1\end{array} \right.$ is
Set $A$ has $3$ elements and set $B$ has $4$ elements. The number of injection that can be defined from $A$ to $B$ is
Let $f(x)=2 x^{2}-x-1$ and $S =\{n \in Z :|f(n)| \leq 800\}$ . Then value of $\sum_{n \in S} f(n)$ is . . . . .
The range of the function $f(x) = \frac{{x + 2}}{{|x + 2|}}$ is
Let $c, k \in R$. If $f(x)=(c+1) x^{2}+\left(1-c^{2}\right) x+2 k$ and $f(x+y)=f(x)+f(y)-x y$, for all $x, y \in R$, then the value of $|2( f (1)+ f (2)+ f (3)+\ldots \ldots+ f (20)) \mid$ is equal to